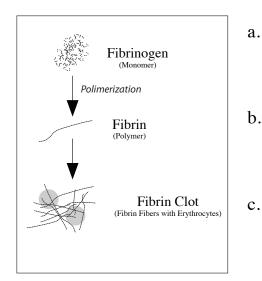

## THE CARDIOVASCULAR SYSTEM: THE BLOOD

- 1. Introduction
  - A. Blood and Circulation
  - B. Connective Tissue
    - i. Fibrous Elements
      - Fibrinogen
      - Fibrin
    - ii. Matrix
      - Formed Elements
      - Plasma
- 2. Functions of Blood
  - A. Transport
    - i. Gases and Nutrients
    - ii. Waste Products
      - CO2  $\rightarrow$  Lungs
      - Metabolic Wastes (ie., Urea)  $\rightarrow$  Kidneys
    - iii. Hormones



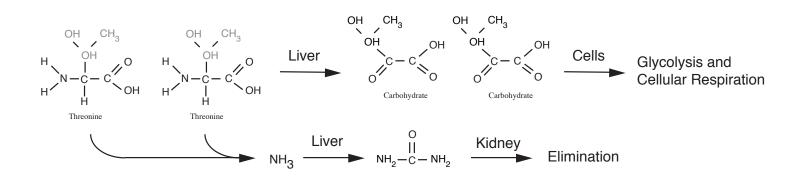



- B. Regulates
  - i. Blood Clotting
  - ii. Body Temperature
  - iii. pH (See Buffer System and Video)
  - iv. Water and Electrolyte Balance/Concentration
- C. Protection (Leukocytes "White Blood Cells" will be examined when we do the immune system)



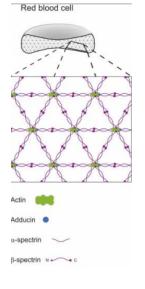
- B. Coloration
  - i. Oxygenated Hemoglobin
  - ii. Deoxygenated Hemoglobin
  - iii. Plasma
  - iv. Platelets and White Blood Cells
- C. pH 7.35 to 7.45

## 4. Blood Components


- A. Plasma
  - i. Water
  - ii. Proteins



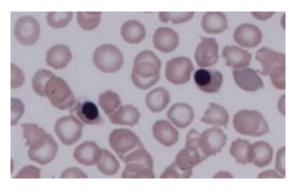
- a. Albumins (See fluid Movement Handout and Video)
  - Osmosis and Edema
- b. Fibrinogen
  - Serum
  - Globulins
    - Major Histocompatibility Complex (MHC)
    - Antigens
    - Antigen-antibody complex
    - Immunoglobulins (Antibodies)


| * | IgM |
|---|-----|
| * | IgG |
| * | IgA |
| * | IgE |
| * | IgD |

- iii. Electrolytes
  - a. Sodium and potassium in water balance (see handout and video)
- iv. Nutrients and Waste Products
  - a. Glucose (70 110 mg/dl)
    - Review Glycolysis and Cellular Respiration
  - b. Metabolic Wastes
    - Deamination (Removal of Amino Group, NH<sub>2</sub>)



v. Gases and Buffers (See Buffer System Handout and Video)


- 5. Hematopoiesis see Handout
- 6. Red Blood Cells (Erythrocytes)
  - Spectrin



Hemoglobin (Hb)

A.

- i. Globin
- ii. Heme
- iii. Iron



In the video, some incorrect numbers are given, the correct are:

Each RBC has ~250 million hemoglobin molecules Each Hemoglobin molecule can carry 4 O2 molecules each Therefore, each RBC can carry ~1 billion oxygen molecules

- iv. Transport of Oxygen in Blood
  - a. Oxyhemoglobin (HbO<sub>2</sub>)
  - b. Fetal Hemoglobin (HbF)
- v. Carbon Dioxide Transport (60%) (SEE Downloadable Handout!!)
  - a. 10% Dissolved in plasma
  - b. 30% as Carbaminohemoglobin

HbCO<sub>2</sub>

c. 60% as Bicarbonate Ions

\*

Chloride Shift

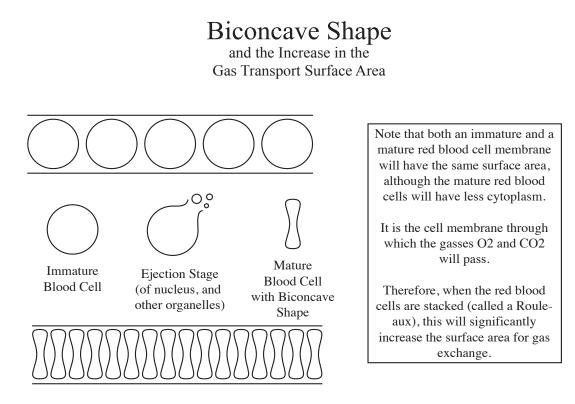
- Β. Erythrocyte Membranes and Solutes
  - i. Flexibility

ii.

Isotonic Solution

|  | Effect of Solute | Concentrations | (See | downloadable | handout) |
|--|------------------|----------------|------|--------------|----------|
|--|------------------|----------------|------|--------------|----------|

Osmosis


Spectrin

Hypotonic Solution

| Hypertonic Solution |  |
|---------------------|--|
|                     |  |
|                     |  |
|                     |  |
|                     |  |

- Isotonic a.
- Hypertonic b.
  - Crenation •
- Hypotonic c.
- i. Development Phases (See Handout)
  - **Ribosome Production** a.
  - b. Hemoglobin Synthesis
  - **Ejection Stage** c.
- **Biconcave Shape** ii.





- iii, Anaerobic Metabolism (See handout)
- D. Regulation (SEE handout learn cycle!)
  - a. Erythropoietin
- E. Erythrocyte Destruction and Removal
  - i. Longevity (80-120 days)
  - ii. Phagocytosis
    - Macrophages
    - a. Hemoglobin (See Handout)
      - Heme  $\rightarrow$  Biliverdin  $\rightarrow$  Bilirubin
      - Bile
    - b. Iron (See Handout on Iron Transport)

- Ferritin
- Transferrin

Important Note: Leukocytes is are an important group of formed elements that are critical in fighting infection! We will cover these when we begin the immune system.

7. Hemostasis: The Prevention of Blood Loss

## \* See Handout on Hemostasis

- A. Vasoconstrictive Phase
- B. Platelet Phase
  - Platelet Aggregation
- C. Coagulation Phase (note cascade of reactions)
  - Antihemophilic Factor
  - Thromboplastinogenase

## Extrinsic and Intrinsic Pathways

- A. Extrinsic Pathway
- B. Intrinsic Pathway

Common Pathways